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ABSTRUCT - The structure properties in the pseudopotential density-functional scheme were investigated using Ab initio 
pseudopotential method within both local density approximation (LDA) and generalize gradient approximation (GGA) for silicon bulk 
and nanoscale solids. The calculated bulk lattice constant of silicon is found to match with experimental data from both LDA and 
GGA, whereas the bulk cohesive energies obtained from GGA are much closer to the experimental data than that from LDA. The 
cohesive energies for silicon nanoparticles, nanowires and nanofilms diverts from that of the bulk when particle sizes decreases. At 
size of 4 nm, the cohesive energy value of nanoparticles is -3.477 eV, which is larger than that of nanowires -4.116 eV and 
nanofilms -4.514 eV. The results obtained are in good agreement with literature data. 

 
Index Term – Ab-initio calculation, Density Functional Theory, Electronic Structure, Nanocrystals, Lattice constant, Cohesive 
Energy and Si. 

——————————      —————————— 
 
 

1 Introduction  
anocrystals are under considerable 
investigation worldwide because of their 
wide scientific and technological interest. 

Thanks for the unique properties of nanocrystals, 
the fabrication of nanostructure materials and 
nanodevices with desirable properties in atomic 
scale has become an emerging interdisciplinary 
field involving solid-state physics, materials 
science, chemistry and biology [1]. Silicon material 
is the leading semiconductor material and 
dominates current industry. The application of 
silicon nanocrystaline particles has become an 
extensive and attractive area of research due to 
their diverse properties [2]. Silicon nanoparticles, 
known as one of the most important types of 
nanomaterials, feature a number of unique merits, 
such as excellent electronic, optical, 
thermodynamic properties, huge surface-to-
volume ratios, and facile surface modification [3-6].  
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The cohesive energy as an important 

physical quantity is often strongly connected to the 
unique properties of nanostructures [7]. The 
cohesive energy of solid can be measured 
experimentally by determining the heat of 
sublimation [8] or computed by theoretical 
methods such as density functional theory (DFT) 
[9], cellular method [10], KKR method [11], linear 
muffin-tin orbital method [12] and many other 
ones. All of them are developed for calculating the 
cohesive energy of bulk materials. It has been 
reported that the cohesive energies measured for 
both Mo and W of nanoparticles are strongly 
depend on their size which was carried out by Kim 
et al. [13]. Currently there are several detailed 
theoretical models available for determining 
cohesive energy of nanoparticles which are applied 
for metals. Jiang and his colleges [14] reported a 
model based on thermodynamical analysis and 
employed well on nanoscale size dependence of 
solids. Fang et al. [15] have used a Molecular 
Dynamic (MD) simulations based on the Stilling-
Weber potential model to calculate cohesive 
energy for silicon nanoparticles, while Maeda et al. 
[16] have used the total energy calculation based 
on a Transferable-Tight-Binding (TB) model for 
silicon nanowires.  

The first-principle calculations of material 
properties, relying upon quantum mechanics and 
electromagnetism has undergone tremendous 
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progress. Density Functional Theory (DFT) is at the 
heart of this rapid evolutio. The difficulty of fully 
solving the Schrödinger equation for the wave 
function has been solved by Kohn-Sham [9, 17], 
who showed that the task of finding the right 
electron density can be expressed in a way that 
involves solving a set of equations in which each 
equations only involves a single electron. The 
Kohn-Sham equations represent a mapping of the 
interacting many-body system onto a system of 
non-interacting electron moving in an effective 
potential due to all the other electrons. 
Furthermore, DFT in the Kohn-Sham 
implementation with LDA [17] or GGA [18] 
approximation for the exchange-correlation 
functional has been successfully applied to deduce 
structure, electronic, magnetic as well as other 
properties of myriad of condense matter 
systems[19].  

In the present work, the cohesive energy 
based on the first-principles density functional 
theory calculations is investigated for bulk silicon 
as a standard and nanocrystals in a size range from 
2 to 19 nm. The results are analyzed and compared 
with literature data.   

 
2 Theoretical Method: 

 
2.1 Computational Details:  
 

In order to find out the electronic structure 
and the properties of matter, the time-independent 
Schrödinger equation must be solved. In this work, 
the total energy self-consistently by means of first 
principles electronic structure is performed within 
LDA using the Perdew-Wang [20] and GGA using 
the Perdew-Burke-Ernzerh [21] at the Kohn-Sham 
DFT level. The Ab-initio DFT calculations are 
performed by using the ABINIT code [22] which is 
based on the plane-wave basis set. Ultrasoft 
Troullier-Martin [23] pseudopotential was used to 
describe the interactions of ionic and valance 
electrons. In addition, to accurately approximate 
integrals over the Brillion zone calculations of the 
electronic states over special sets of k points, 
Monkhorst and pack [24] uniform set for any 
crystal was used. 

The code has several input parameters or 
variables some of which should be optimized that 
gives ground state total energy. The convergence 

of the system should be checked with respect to the 
total energy as a function of both cut-off energy 
and total number of k points for the plane wave 
expansion of the wave functions before any 
calculations such as electronic properties, 
geometry optimization etc. Different cut-off 
energies were tested (between 2 to 40 Hartree) and 
the cut-off energy of (30 Hartree) was found to 
achieve better convergence within both LDA and 
GGA. Also, according to the Monkhorest Pack 
scheme the Brillion zone was sampled. To get high 
degree of convergence, the grid size from (2×2×2) 
to (14×14×14) k-points were tested and (12×12×12) 
mesh was used to achieve better convergence for 
both silicon Bulk and nanocrystals. In all cases, the 
energy convergence was achieved with the tolerant 
on the difference of a total energy of less than 5 x 
10-7 eV.  

On the other hand, the total energy of an 
isolated Si atom is needed for evaluating the 
cohesive energy. The total energy of an isolate Si 
atom was calculated with a super cell geometry 
based on DFT implemented in the ABINIT code. A 
Si atom supposed to be in the center of a huge 
periodically repeating unit cell. Calculations 
concerning isolate energy were performed in the 
cubic cell size (45Å×45Å×45Å) with cut-off energy 
of (30 Hartree) to the energy convergence of less 
than 1 x 10-11 eV within both LDA and GGA.  

 
 

2.2 Lattice Constant and Cohesive Energy for Si 
Bulk and its Nanoscale size: 
 

The model for calculating size dependent 
lattice constant in bulk and nanoscale size, 
respectively is reported by Omar [25] as follow: 

 
a(∞)  = 4

√3
dmean(∞)                                                    (1)  

and 
a(r)  = 4

√3
dmean(r)                                                      (2) 

 
where (∞)  and (r)  refers to bulk and nanosize. 
Then a(∞) and a(r) are the bulk and nanocrystals 
unit cell lattice constant and dmean  is the lattice 
mean bond length. The size dependent mean bond 
length dmean(r)  is calculated according to the 
following relation; 
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 dmean(r) = h − ∆dmean(r)                                         (3) 
 
 

where h  is the first surface layer inter-planer 
distance of the crystal. This value for silicon is 
0.3368nm, ∆dmean(r) which is the increase in mean 
bond length is calculated according to [26]: 
 

 ∆dmean(r) = ∆dmean (rc) �e
−(β−1)
( rro

−1)�

1
2

                           (4) 

 
For ∆dmean(rc)  as the maximum increase in the 
mean bond length as  dmean(rc) = h − ∆dmean(rc) 
and is equal to 0.0988 nm, β as a related material 
constant is 2.5 for silicon [25], r is the radius of the 
nanoparticles and ro  denotes a critical radius at 
which all atoms of the particle are located on the 
bulk surface and is calculated from ro = (3− d)h. 
In this equation, d = 0  for nanoparticles (NPs) 
where r has a usual meaning of radius, d = 1 for 
nanowires (NWs) where r being taken as its radius 
and d = 2 for nanofilms (NFs) with r denoted its 
half thickness [27, 28]. 

The cohesive energy is an important 
physical quantity that accounts for the bond 
strength of a solid, which equals the energy needed 
to divide the solid into isolated atoms by breaking 
all the bonds. Cohesive energy is also a basic 
quantity for thermodynamics, by which almost all 
thermodynamic properties of materials can derive 
[8]. Consider the unit cell of N atoms; the bulk 
cohesive energy Ecoh(∞) per unit cell is [29, 30]: 

 

Ecoh(∞) =  Etot(∞)−∑ EisoN
N

                                         (5) 

 

where Eiso is the energy of an isolated atom. In this 
work, Eq.(5) is modified for applications on 
nanoscale size material for both LDA and GGA as 
follow; 

 Ecoh
LDA,GGA(r) =  Etot

LDA,GGA (r)− ∑ Eiso
LDA,GGA

N

N
                       (6) 

 

3  Results and Discussion: 

A series of lattice constants a(∞)   have 
been taken to calculate the total energies Etot(∞) as 
illustrated in Fig. (1) and Fig. (2). In order to 
increase the speed of the calculations, the process 
was carried out on the primitive cell rather than 
the conventional cell. The equilibrium lattice 
constant value calculated for silicon bulk structure 
are in better agreement for both LDA (5.424 Å) and 
GGA (5.463 Å) compared to reported experimental 
data as shown in Table (1). Calculations in light of 
equations from (1) to (4) give an increase to the 
lattice constant from 5.431Å for bulk to 6.632Å, 
6.144Å and 5.751Å with 2nm for nanoparticles, 
nanowires and nanofilms respectively. These 
results were used to calculate the modified 
minimum total energy as well as cohesive energy 
for nanoparticles, nanowires and nanofilms. The 
data within GGA shows that the absolute values of 
minimum total energy EtotGGA (r)   are strongly 
depends on the nanoscale size. They decreases 
from (-214.463 eV) for bulk state to minimum 
values of (-212.157 eV), (-213.435 eV) and (-
214.231eV) at r = 2nm  for three different 
dimension. Since dmean(r) for a nanoparticle (NPs) 
has large size dependence, then it has less total 
energy compared to both nanowires (NWs) and 
nanofilms (NFs) as seen in Fig. (3). On the other 
hand, it has been explained that, increase in bond 
energy due to the size reduction of nanocrystals is 
from the surface coordination imperfection 
formation. In metal, this induces atomic lattice 
contraction on the nanoparticles surface and that 
strengthening of remnant lattice bonds [31, 32, 33]. 
In case of Si, Ma et al. [34] reports a 12% 
contraction in Si-Si surface bonds with the decrease 
in nanowires diameter from 7 to 1.3 nm. 

Through Eq. 5, the cohesive energies 
Ecoh(∞)  were obtained by taking the energy 
difference between atomic equilibrium energy in 
the silicon structure and the energy of isolated 
atoms. According to the data listed in Table (1), the 
cohesive energy obtained from GGA has better 
values in comparison to the experimental one 
(4.63eV), that is why the method is chosen for the 
size dependence parameters in this work. The size-
dependent cohesive energies for nanocrystals 
within GGA EcohGGA (r) were calculated by taking the 
obtained minimum values of EtotGGA (r) due to Eq. (6) 
and the dependence is shown in Fig. 4. The 
increase of mean bond length leads to decrease in 
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cohesive energy with the decrease of nanosize in 
this figure. Note that in the center of nanocrystals 
the bond length is almost the same as it is for the 
bulk, which gives the bulk cohesive energy. For 
smaller sizes where atoms at surface layers have 
larger percentage of the total number of atoms in 
nanocrystals considered, the cohesive energy value 
is smaller. At 4 nm sizes, Ecoh(r) reduces by 25%, 
11% and 2.5% for NPs, NWs and NFs respectively. 
The present calculation values on cohesive energy 
of Si nanoparticles have the same trend variation in 
comparison with the reported experimental results 
for Mo and W nanoparticles [13] thier absolute 
values of Ecoh(r)  decreases with the size 
reductions.  

Furthermore, the results obtained in the 
present work for EcohGGA (r) are in good agreement 
with those reported using MD [15] and TB [16]. 
The variation in the cohesive energies has the same 
size dependent trend when r > 6nm for NPs and r > 
5nm for NWs. While for smaller r, MD and TB give 
lower values. The higher deviation dependence in 
the lower scale is expected to be related to the size 
dependence of lattice constants applied in this 
work. When particle sizes decrease to several 
nanometers the bond length stretches larger than 
that of bulk silicon and then the total energy 
decreases which is lead to decrease the cohesive 
energy as shown in Fig. (4).  

 
Table (1): The calculated and experimental equilibrium structural 
properties of bulk Si within LDA and GGA and percentage error are 
given in parentheses for this work: 

Structural 
Properties 

 

This Work Other 
Theoretical 

Works 
Employed 

(LDA & GGA) 
 

Exp. 

Data 

 
LDA GGA 

a(∞) 
( Å) 

5.424 
(0.13%) 

5.463 
(0.58%) 

(5.378,5.463)[29], 

(5.390,5.460)[35],                            

(5.488,5.490)[36], 

(5.407,5.475)[37], 

(5.403,5.466)[38] 

5.431[3] 

Etot(∞) 
 (eV) -241.555 -214.463   

Eiso  
 (eV) -115.118 -102.206   

Ecoh (∞)  
(eV) 

-5.66 
(18.19%) 

-5.02 
(7.76%) 

(-6.00, -5.42)[29],  
(-5.37,- 4.44)[35],  

(-4.30 Employed 
MD)[15], 
(-4.50 Employed 
TB)[16] 

  

-4.63[40] 
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Fig.(3): The difference between the minimum total energies as 
a function of  radius for various nanocrystals     within GGA. 
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Fig.(2): Total energy versus lattice constant for Bulk Si within GGA. 
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Fig.(1): Total energy versus lattice constant for Bulk Si within LDA. 
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4 Conclusions: 

 
Using first-principles calculations based 

on DFT within GGA, we studied the cohesive 
energy of bulk Si as well as that of nanocrystals. 
The size dependence of mean bond length explains 
well the cohesive energies for all nanostructured 
types. The absolute values of Ecoh(r)  decreases 
with the decrease of nanoscale size and the effects 
are stronger for nanoparticles than that of both 
nanowires and nanofilms.  
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Fig.(4): Nanoscale size dependence cohesive energy for Si. 
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